2D Load Cell Argon Series - SPN02012 - Medium to High Load
2D Load Cell Argon Series - SPN02012 - Medium to High Load

2D Load Cell Argon Series - SPN02012 - Medium to High Load

Step-by-Step Installation


Introduction


This manual applies to the following tester


notion image
MFT-5000
notion image
MFT-2000
notion image
MFT-2000 A
notion image
SMT-5000
 
This type of Load Cell is composed of a singular part, which makes it easier to use. Inside this Load Cell are two piezo sensors, one measuring Fz and the other measuring Fx.
notion image
In this example of standard assembly, you can see on the front side of the 200N load cell a sticker which is the calibration unit of each axis force, fz and fx, necessary to read correct value based on those reference value.
The 100N suspension assembled on it is used to limit the vibration induced by the sample during testing. There are several variations of suspensions depending on the maximum load it can be effective on.

Exemple of holder into their suspensions:


notion image

Required Tools and Components


Components:

  • Argon Load Cell
  • Argon Adapter Plate
  • Argon Quick Exchange
  • Slip Sleeve
  • Ball Holder Plate MM002059-00
  • Ball Holder
  • Optional Components:
    o Extension Block
    o Suspension Plate

Screws and Hardware:

  • (4x) 10-32 Screws - BM310612
  • (4x) 10-32 Screws - BM310320-5
    SHCS 10-32 X .375" LG PLAIN 18-8 SST
  • (4x) ¼ inch button head screws
  • (4x) 8-32 Screws
  • Allen wrenches: 5/32", 9/64”
 

Mounting the Argon Sensor on MFT-5000


page icon
In most cases, the Argon adapter plate will already be installed. However, if
installation is required, follow these steps:
  1. Mount the adaptor plate plate directly to the Quick Exchange base using the provided 4 x 10-32 x 1.250” long screws using 5/32” Allen wrench.
    1. notion image
      (Optional) Using the extension Block

      page icon
      (Optional) You can also use an extension block to reduce the distance between the load cell and the lower setup.
      2" (left) and 4" extensions (right)
      2" (left) and 4" extensions (right)
      Without extension block (left) and with extension block (right)
      Without extension block (left) and with extension block (right)
      1. Mount the block extension on the exchange plate with 4 4 x 10-32 x 1.250” long screws using 5/32 Allen wrench.
        1. notion image
      1. Then the adaptor plate mounted on the extension block with 4 x 10-32 x .625” long screws using 5/32 Allen wrench.
      notion image
      notion image
  1. Install the load cell on the fast-exchange attachment by fastening the 4 captive screws using a 5/32" Allen wrench.
notion image
notion image
page icon
  • Align the sensor so that the ribbon cable port is on the right-hand side
    when viewed from the front.
  • This ensures correct orientation in relation to the rear alignment features of the Quick Exchange.
 
 

Mounting the Argon Sensor on MFT-2000


  • Install the load cell on the fast-exchange attachment by fastening the 4 captive screws using a 5/32" Allen wrench.
notion image
page icon
  • The narrow side of the fast exchange plate’s should point to the left of the front load cell as this side will fit into the back of the sliding support.
  • The front of the load cell is the face showing the Rtec logo and the unit calibration sticker.

(Optional) With Extension block:

page icon
(Optional) You can also use an extension block to reduce the distance between the load cell and the lower setup.
2" (left) and 4" extensions (right)
2" (left) and 4" extensions (right)

  1. Mount the block extension on the exchange plate with 4 4 x 10-32 x 1.250” long screws using 5/32 Allen wrench.
    1. notion image
  1. Then the adaptor plate mounted on the extension block with 4 x 10-32 x .625” long screws using 5/32 Allen wrench.
    1. notion image
  1. Install the load cell on the fast-exchange attachment by fastening the 4 captive screws using a 5/32" Allen wrench.
    1. notion image
page icon
  • The narrow side of the fast exchange plate’s should point to the left of the front load cell as this side will fit into the back of the sliding support.
  • The front of the load cell is the face showing the Rtec logo and the unit calibration sticker.
 
 
 

Ensure the graphite adapter plate is installed


  • Generally, the graphite plate is already installed on the load cell, make sure to have it installed to continue.
  • Otherwise install it by fastening the 4 x 6-32 x .250” long screws using 7/64” Allen key.
    • notion image
 

Mounting the suspension


Choosing the right suspension purchased


A suspension is used to limit the vibration induced by the sample during testing.

There are several variations of suspensions depending on the maximum load it can be effective on.
notion image
 

Example


  • For a test at 30N, you would need to use the 50N suspension.
    By doing so, you will mitigate the vibrations the most.
  • If you work at 48N it would be better to use a 100N suspension as the 50N suspension would not work for vibrations above 2N.
 
 
 
Medium to High Suspension List
notion image
notion image
Low Range Suspensions
notion image
Range and Components
SPN Number
0.5N suspension L shape
SPN14015-508
1N suspension L shape
SPN14015-509
5N suspension L shape
SPN14015-510
10N suspension L shape
SPN14015-511
Low load sensor clamp Aluminum
SPN14039-512
Low load sensor clamp Steel
SPN14039-513
 
page icon
The labeled force represents the suspension capability, not the nominal operating force.
The suspension must be used within this specified range and exceeding this limit will lead to ineffective suspension operation.
  1. Mount the suspension between the Argon Sensor and the Ball Holder
    Plate by tightening the 2 captive screws using 9/64” Allen key.
    1. notion image
      page icon
      The label of the suspension should face the same direction as the load cell sticker.
 
 
notion image

Rotary Application Type


Ball On Disk / Pin On Disk

 

Pin/Ball holder preparation


The ball holder along with the provided collet can also accommodate circular pins.

notion image
  1. Loosen the nut to free the ball.
  1. Insert the adjusting pin into the holder, then the ball.
    Provided for standard test: Ball, .250" (1/4") (6.350mm) Dia
    E52100 100Cr6 grade 25 Alloy Steel.
  1. Hold the holder vertically, so the ball is resting on the pin.
    Using a 1/8" Allen key, fasten the screw inside the holder to slightly push the ball.
  1. Once the ball is retracted enough, fasten the nut to secure it.
 
notion image
page icon
For preliminary testing: The ball may be reused by rotating it to expose a unworn contact surface.
For final measurements: It is recommended to employ a new ball for each test to ensure accuracy and reproducibility.

Extension holder

page icon
  • Use the extension only in particular cases where the ball holder cannot reach the sample.
  • Increasing the ball holder length can negatively affect test results, especially in reciprocating tests. Whenever possible, use the load cell extension block instead.
 
 
notion image
(to reduce the distance towards the sample)

Universal Ball holder Overivew


 
notion image

1. Test Ball or Pin

Rtec balls catalog


Upper Sample Holder for 1000℃ Chamber
Upper Sample Holder for  1000℃  Chamber
Part no.
0.5 inch ball
SPN030060-55
0.375 inch ball
SPN030060-54
0.25 inch ball
SPN030060-53
3 mm ball
SPN030060-56
6mm diameter cylinder
SPN030041-462
6.3mm diameter cylinder
SPN13108
9.5mm diameter cylinder
SPN030041-463
12.7mm diameter cylinder
SPN030041-464
15mm diameter cylinder
SPN030041-465
  • E52100 Alloy Steel / HRC60
  • 304 SSt / HRC25
  • 440C SSt / HRC58
  • WC Tungsten Carbide / HRC75
  • SiN Silicon Nitride
  • Nonporous Alumina Ceramic balls
  • PTFE
Available Ball size :

  • 1.6mm
  • 3.9mm
  • 6.3mm
  • 9.5mm
  • 12.7mm
 

2 . Nut

3. ER11 Collet

General metric range avalaible: from 1 mm to 7 mm (0.5 mm increments)
Each collet has a clamping range of 0.5 mm
ex: an ER11-3 mm collet can also clamp pins/balls with a 2.5-3.5 mm diameter.

4. Adjusting pin

This pin enables ball position adjustment within the collet.

5. Ball Holder

Holder Specification MSC 81197253
Collet Series
ER11
Shank Type
Straight
Through Coolant
No
Shank Diameter (Inch)
5/8
Minimum Collet Capacity (Decimal Inch)
0.0190
Maximum Collet Capacity (Decimal Inch)
0.2760
Overall Length (Inch)
3-1/2
Overall Length (Decimal Inch)
3.5
Actuator Type
Wrench
Shank Length (Decimal Inch)
3.0300
Collet Nut Diameter (Decimal Inch)
0.6200

6. Extension

page icon
For additional information or to place an order, please contact Rtec Support (contact information provided at the end of this manual).
 

Block On Disk

 

Reciprocating Application Type


Ball On Plate / Pin On Plate

Block On Plate

Block Sample Quotation


 

Sliding Piston Ring On Cylindrical Liner

TRIBOCORROSION CONTAINER, PIN SAMPLE HOLDER

Block-On-Ring Application Type


Ball On Ring / Pin On Ring

Block-On-Ring

Self-Adjusting Block holder preparation


notion image
page icon
The self-leveling block holder will ensure proper contact during the test.
  1. Firstly ,loosen the 2 tightening screws using /16” Allen key.
  1. Slide in the block sample into the block support
    1. Avalaible ASTM Rtec Block Catalog

      ASTM: D3704, G77, G176, D2714, D3704, D2509
  1. Level the block sufficiently into the holder.
  1. Tighten the securing screws on each side.
 

Block sample Quotation


notion image

Rtec Test Block Size: 0.620 x 0.250 x 0.4

L x l x h in inches
Reference : MM000128-XX
notion image
Dimension in inches
Dimension in inches
 

High Torque Block Holder

Quotation for this one

?
?

Brake Test Holder

Autre Holder

SAMPLE HOLDER, TORQUE SENSOR

SAMPLE HOLDER FOR BRIDGE SENSOR

Contact Sample Holder, Fretting Test

notion image
AM000569-00

TCT Sample Holder

HFRR SAMPLE HOLDER, FRETTING TEST

AM000569-06

Tribocorrosion sample holder

Installing the Ball Holder


  1. Use four 1/4” button head screws to secure the assembly to the load cell
    and tighten using a 5/32” Allen wrench.
    Then Insert the slip sleeve into the sensor mount.
    1. notion image
  1. Place the ball holder into the slip sleeve.
  1. Mount the Ball Holder onto the suspension in the same manner as onto
    the load cell using a 9/64” Allen wrench.
    1. Montage with suspension
      Montage with suspension
      Montage without suspension
      Montage without suspension
 

Installing the Argon (MFT-5000)


Lower the Z-Axis all the way down using the jogbox.
Lower the Z-Axis all the way down using the jogbox.
To create clearance, move the Y-stage.
To create clearance, move the Y-stage.

Before installing the load cell


  1. Lower the Z-Axis all the way down using the jogbox, to have access to the attachement.
  1. Ensure the Y-stage is moved sufficiently backward to avoid obstruction.
    Although unlikely to cause damage, improper placement may interfere with installation.

Animated instructions
Animated instructions
  1. Slide the sensor assembly with the Quick Exchange into the MFT-5000
    Quick Exchange Dock
    1. notion image
       
      page icon
      • Ensure first that the locking wings are forward.
      • The front of the load cell (Rtec logo and sticker) is facing you.
  1. Lift the Argon Assembly up while tightening the Quick Exchange locks
    outward
    1. notion image
       
      page icon
      • Always hold the sensor by its sides to avoid applying force on the sensors.
      • Make sure the assembly is firmly wedged up with no vertical play.
  1. Connect the ribbon cable to the Argon Load Sensor.
    1. notion image
       
       
       
      page icon
      The connector only fit one way.
       
 
 

Installing the Argon (MFT-2000)


notion image
notion image
  1. Slide in the load cell into the Z stage rack.
    1. page icon
      Make sure the 4 screws above the rack are removed.
      Slide the load cell with its front facing you and the connector on the right.
  1. Fasten the 4 securing screws by hands.
    1. notion image
  1. Connect the ribbon cable. The connector only fit one way.
 
 
 

Hardware Final Notes


  • Always confirm all screws are hand-tightened and then secured with the appropriate Allen key.
  • Refer to the full user manual for safety precautions and maintenance schedules

Contact & Support


For technical support or further assistance, please contact:
Rtec-Instruments Support
support@rtec-instruments.com
+1 (408) 708-9226

Manual Versions


 
Manual Version
Date
Update Description
12/09/2025
Initial Manual Version