Load Cell Verification and Calibration
Load Cell Verification and Calibration

Load Cell Verification and Calibration

Hardware Step-by-Step


Load Cell Installation


Low Load Argon


Required Tools and Components


Components:

  • Low load argon load cell
  • Suspension holder
  • Low load suspension
  • Ball holder

Screws and Hardware:

  • Allen key: 5/64”, 7/64”, 3/32”
 

Mounting the Argon Sensor on MFT-2000


  • Install the load cell on the fast-exchange attachment by fastening the 4 captive screws using a 5/32" Allen wrench.
notion image
page icon
  • The narrow side of the fast exchange plate’s should point to the left of the front load cell as this side will fit into the back of the sliding support.
  • The front of the load cell is the face showing the Rtec logo and the unit calibration sticker.

(Optional) With Extension block:

page icon
(Optional) You can also use an extension block to reduce the distance between the load cell and the lower setup.
2" (left) and 4" extensions (right)
2" (left) and 4" extensions (right)

  1. Mount the block extension on the exchange plate with 4 4 x 10-32 x 1.250” long screws using 5/32 Allen wrench.
    1. notion image
  1. Then the adaptor plate mounted on the extension block with 4 x 10-32 x .625” long screws using 5/32 Allen wrench.
    1. notion image
  1. Install the load cell on the fast-exchange attachment by fastening the 4 captive screws using a 5/32" Allen wrench.
    1. notion image
page icon
  • The narrow side of the fast exchange plate’s should point to the left of the front load cell as this side will fit into the back of the sliding support.
  • The front of the load cell is the face showing the Rtec logo and the unit calibration sticker.
 
 
 

Ball holder and suspension installation


  1. Secure the suspension holder with the 4 screws using 5/64” Allen Key.
    1. page icon
      The labeled force represents the suspension capability, not the nominal operating force.
      The suspension must operate within this specified range.
      Exceeding this limit will lead to ineffective suspension operation.
  1. Fix the suspension then secure it by tightening the side screw using 7/64” Allen key.
    1. ⚠️
      Be careful not to overload the load cell while inserting the suspension.
      You can install the suspension into the holder first before installing the holder on the load cell.
      Or, as shown, you may insert a thin Allen key into the clamping gap during insertion to allow the part to slide in effortlessly.
  1. Install or replace the ball from the ball holder, then hand-tighten the nut or using a wrench (optional).
  1. Secure the ball holder once slide into the suspension by tightening the side screw using 3/32” Allen key.
    1. ⚠️
      The ball holder must not touch the suspension base to ensure proper suspension operation.
 
notion image
notion image

 
page icon
It is possible to use a ball holder extension to reduce the Z distance to the sample in certain testing configurations.
Please contact Rtec Service for this specific matter.
notion image
 
 
 

Installing the Argon (MFT-2000)


notion image
notion image
  1. Slide in the load cell into the Z stage rack.
    1. page icon
      Make sure the 4 screws above the rack are removed.
      Slide the load cell with its front facing you and the connector on the right.
  1. Fasten the 4 securing screws by hands.
    1. notion image
  1. Connect the ribbon cable. The connector only fit one way.
 
 
 

Medium Load Argon


Introduction


This manual applies to the following tester


notion image
MFT-5000
notion image
MFT-2000
notion image
MFT-2000 A
notion image
SMT-5000
 
This type of Load Cell is composed of a singular part, which makes it easier to use. Inside this Load Cell are two piezo sensors, one measuring Fz and the other measuring Fx.
notion image
In this example of standard assembly, you can see on the front side of the 200N load cell a sticker which is the calibration unit of each axis force, fz and fx, necessary to read correct value based on those reference value.
The 100N suspension assembled on it is used to limit the vibration induced by the sample during testing. There are several variations of suspensions depending on the maximum load it can be effective on.

Exemple of holder into their suspensions:


notion image

Required Tools and Components


Components:

  • Argon Load Cell
  • Argon Adapter Plate
  • Argon Quick Exchange
  • Slip Sleeve
  • Ball Holder Plate MM002059-00
  • Ball Holder
  • Optional Components:
    o Extension Block
    o Suspension Plate

Screws and Hardware:

  • (4x) 10-32 Screws - BM310612
  • (4x) 10-32 Screws - BM310320-5
    SHCS 10-32 X .375" LG PLAIN 18-8 SST
  • (4x) ¼ inch button head screws
  • (4x) 8-32 Screws
  • Allen wrenches: 5/32", 9/64”
 

Mounting the Argon Sensor on MFT-5000


page icon
In most cases, the Argon adapter plate will already be installed. However, if
installation is required, follow these steps:
  1. Mount the adaptor plate plate directly to the Quick Exchange base using the provided 4 x 10-32 x 1.250” long screws using 5/32” Allen wrench.
    1. notion image
      (Optional) Using the extension Block

      page icon
      (Optional) You can also use an extension block to reduce the distance between the load cell and the lower setup.
      2" (left) and 4" extensions (right)
      2" (left) and 4" extensions (right)
      Without extension block (left) and with extension block (right)
      Without extension block (left) and with extension block (right)
      1. Mount the block extension on the exchange plate with 4 4 x 10-32 x 1.250” long screws using 5/32 Allen wrench.
        1. notion image
      1. Then the adaptor plate mounted on the extension block with 4 x 10-32 x .625” long screws using 5/32 Allen wrench.
      notion image
      notion image
  1. Install the load cell on the fast-exchange attachment by fastening the 4 captive screws using a 5/32" Allen wrench.
notion image
notion image
page icon
  • Align the sensor so that the ribbon cable port is on the right-hand side
    when viewed from the front.
  • This ensures correct orientation in relation to the rear alignment features of the Quick Exchange.
 
 

Mounting the Argon Sensor on MFT-2000


  • Install the load cell on the fast-exchange attachment by fastening the 4 captive screws using a 5/32" Allen wrench.
notion image
page icon
  • The narrow side of the fast exchange plate’s should point to the left of the front load cell as this side will fit into the back of the sliding support.
  • The front of the load cell is the face showing the Rtec logo and the unit calibration sticker.

(Optional) With Extension block:

page icon
(Optional) You can also use an extension block to reduce the distance between the load cell and the lower setup.
2" (left) and 4" extensions (right)
2" (left) and 4" extensions (right)

  1. Mount the block extension on the exchange plate with 4 4 x 10-32 x 1.250” long screws using 5/32 Allen wrench.
    1. notion image
  1. Then the adaptor plate mounted on the extension block with 4 x 10-32 x .625” long screws using 5/32 Allen wrench.
    1. notion image
  1. Install the load cell on the fast-exchange attachment by fastening the 4 captive screws using a 5/32" Allen wrench.
    1. notion image
page icon
  • The narrow side of the fast exchange plate’s should point to the left of the front load cell as this side will fit into the back of the sliding support.
  • The front of the load cell is the face showing the Rtec logo and the unit calibration sticker.
 
 
 

Mounting the suspension


Choosing the right suspension purchased


A suspension is used to limit the vibration induced by the sample during testing.

There are several variations of suspensions depending on the maximum load it can be effective on.
notion image
 

Example


  • For a test at 30N, you would need to use the 50N suspension.
    By doing so, you will mitigate the vibrations the most.
  • If you work at 48N it would be better to use a 100N suspension as the 50N suspension would not work for vibrations above 2N.
 
 
 
Medium to High Suspension List
notion image
notion image
Low Range Suspensions
notion image
Range and Components
SPN Number
0.5N suspension L shape
SPN14015-508
1N suspension L shape
SPN14015-509
5N suspension L shape
SPN14015-510
10N suspension L shape
SPN14015-511
Low load sensor clamp Aluminum
SPN14039-512
Low load sensor clamp Steel
SPN14039-513
 
page icon
The labeled force represents the suspension capability, not the nominal operating force.
The suspension must be used within this specified range and exceeding this limit will lead to ineffective suspension operation.
  1. Mount the suspension between the Argon Sensor and the Ball Holder
    Plate by tightening the 2 captive screws using 9/64” Allen key.
    1. notion image
      page icon
      The label of the suspension should face the same direction as the load cell sticker.
 
 
 

Pin/Ball holder preparation


The ball holder along with the provided collet can also accommodate circular pins.

notion image
  1. Loosen the nut to free the ball.
  1. Insert the adjusting pin into the holder, then the ball.
    Provided for standard test: Ball, .250" (1/4") (6.350mm) Dia
    E52100 100Cr6 grade 25 Alloy Steel.
  1. Hold the holder vertically, so the ball is resting on the pin.
    Using a 1/8" Allen key, fasten the screw inside the holder to slightly push the ball.
  1. Once the ball is retracted enough, fasten the nut to secure it.
 
notion image
ℹ️
For preliminary testing: The ball may be reused by rotating it to expose a unworn contact surface.
For final measurements: It is recommended to employ a new ball for each test to ensure accuracy and reproducibility.

Extension holder

ℹ️
  • Use the extension only in particular cases where the ball holder cannot reach the sample.
  • Increasing the ball holder length can negatively affect test results, especially in reciprocating tests. Whenever possible, use the load cell extension block instead.
 
 
notion image
(to reduce the distance towards the sample)

Universal Ball holder Overivew


notion image
 

1. Test Ball or Pin

Rtec balls catalog


  • E52100 Alloy Steel / HRC60
  • 304 SSt / HRC25
  • 440C SSt / HRC58
  • WC Tungsten Carbide / HRC75
  • SiN Silicon Nitride
  • Nonporous Alumina Ceramic balls
  • PTFE

Available Ball size :


  • 1.6mm
  • 3.9mm
  • 6.3mm
  • 9.5mm
  • 12.7mm
 

Upper Sample Holder for Chamber


1200° Chamber
Upper Sample Holder for  1200℃  Chamber
Part no.
Ball Holder 9.5 mm ( 3/8")
SPN03U008H
Ball and Pin Holder 6.35 mm  ( 1/4")
SPN03U008-1H
Ball Holder  3.175 mm ( 1/8")
SPN03U008-2H
Ball Holder 1.6 mm ( 1/16")
SPN03U008-3H
1000° Chamber
Upper Sample Holder for  1000℃  Chamber
Part no.
0.5 inch ball
SPN030060-55
0.375 inch ball
SPN030060-54
0.25 inch ball
SPN030060-53
3 mm ball
SPN030060-56
6mm diameter cylinder
SPN030041-462
6.3mm diameter cylinder
SPN13108
9.5mm diameter cylinder
SPN030041-463
12.7mm diameter cylinder
SPN030041-464
15mm diameter cylinder
SPN030041-465

2 . Nut

3. ER11 Collet

General metric range avalaible: from 1 mm to 7 mm (0.5 mm increments)
Each collet has a clamping range of 0.5 mm
ex: an ER11-3 mm collet can also clamp pins/balls with a 2.5-3.5 mm diameter.

4. Adjusting pin

This pin enables ball position adjustment within the collet.

5. Ball Holder

Holder Specification MSC 81197253
Collet Series
ER11
Shank Type
Straight
Through Coolant
No
Shank Diameter (Inch)
5/8
Minimum Collet Capacity (Decimal Inch)
0.0190
Maximum Collet Capacity (Decimal Inch)
0.2760
Overall Length (Inch)
3-1/2
Overall Length (Decimal Inch)
3.5
Actuator Type
Wrench
Shank Length (Decimal Inch)
3.0300
Collet Nut Diameter (Decimal Inch)
0.6200

6. Extension

ℹ️
For additional information or to place an order, please contact Rtec Support (contact information provided at the end of this manual).

Self-Adjusting Block holder preparation


notion image
ℹ️
The self-leveling block holder will ensure proper contact during the test.
  1. Firstly ,loosen the 2 tightening screws using /16” Allen key.
  1. Slide in the block sample into the block support
    1. ASTM Rtec Block Catalog

      HRC 58-62 Roughness 4-8 Uinch → D3704, G77, G176
      SPN13136-145
      HRC 27-33 Roughness 20-30 Uinch → D2714, D3704
      HRC 58-62 Roughness 20-30 Uinch D2509
      SPN13136-146
  1. Level the block sufficiently into the holder.
  1. Tighten the securing screws on each side.
 

Block sample Quotation


notion image

Rtec Test Block Size: 0.620 x 0.250 x 0.4

L x l x h in inches
Reference : MM000128-XX
notion image
Dimension in inches
Dimension in inches

Installing the Ball Holder


  1. Use four 1/4” button head screws to secure the assembly to the load cell
    and tighten using a 5/32” Allen wrench.
    Then Insert the slip sleeve into the sensor mount.
    1. notion image
  1. Place the ball holder into the slip sleeve.
  1. Mount the Ball Holder onto the suspension in the same manner as onto
    the load cell using a 9/64” Allen wrench.
    1. Montage with suspension
      Montage with suspension
      Montage without suspension
      Montage without suspension
 

Installing the Argon (MFT-5000)


Lower the Z-Axis all the way down using the jogbox.
Lower the Z-Axis all the way down using the jogbox.
To create clearance, move the Y-stage.
To create clearance, move the Y-stage.

Before installing the load cell


  1. Lower the Z-Axis all the way down using the jogbox, to have access to the attachement.
  1. Ensure the Y-stage is moved sufficiently backward to avoid obstruction.
    Although unlikely to cause damage, improper placement may interfere with installation.

Animated instructions
Animated instructions
  1. Slide the sensor assembly with the Quick Exchange into the MFT-5000
    Quick Exchange Dock
    1. notion image
       
      page icon
      • Ensure first that the locking wings are forward.
      • The front of the load cell (Rtec logo and sticker) is facing you.
  1. Lift the Argon Assembly up while tightening the Quick Exchange locks
    outward
    1. notion image
       
      page icon
      • Always hold the sensor by its sides to avoid applying force on the sensors.
      • Make sure the assembly is firmly wedged up with no vertical play.
  1. Connect the ribbon cable to the Argon Load Sensor.
    1. notion image
       
       
       
      page icon
      The connector only fit one way.
       
 
 

Installing the Argon (MFT-2000)


notion image
notion image
  1. Slide in the load cell into the Z stage rack.
    1. page icon
      Make sure the 4 screws above the rack are removed.
      Slide the load cell with its front facing you and the connector on the right.
  1. Fasten the 4 securing screws by hands.
    1. notion image
  1. Connect the ribbon cable. The connector only fit one way.
 
 
 

1D+1D


Required Tools and Components


Components:

  • Fz-1D Load Cell
  • Fx-1D Arm: horizontal arm, vertical arm, pivot base, springs
  • 1D+1D Arm kit : suspensions, insulator sleeve, slit sleeve, top cap, adaptor, insulator cap, mounting screw
  • Universal holder

Screws and Hardware:

  • (4x) 1.125 in Screws and Washers
  • Allen wrenches: 5/64", 3/16”

Introduction


notion image
 
  • This type of Load Cell is composed of 2 different parts, each one responsible for one axis of force.
  • One arm with a piezo sensor will measure the friction force along Fx, while Fz will be applied and recorded by another component.
 

Arm montage (if dismounted)


page icon
The Fx sensor should come pre-built. However, if you need to build it, follow the following steps:
  1. Firstly, attach the horizontal arm to the vertical arm.
    Screw the shoulder screw from the bottom hole with FHSHS 6-32 x .750” BM310271-08
    1. notion image
      page icon
      There are 2 types of horizontal arms. The longer version is mostly used with environmental chambers. You need to select the arm depending on how long you want the ball holder to be.
  1. Fix the capacitive sensor to the vertical arm with 2 x 8-32 x .875” BM310290-11.
    1. notion image
      page icon
      The sensor face with the threaded insert.
      notion image
       
  1. Attach the friction arm to the pivot base with 8-32 x .375” BM310280-05 with a 9/64 » allen key.
notion image
⚠️
Please refer to the 3 threads of the base which must point downward to ensure proper angular movement of the pivot base.

Mounting the Fz Load Cell


notion image
  1. Quick-exchange attachement
  1. Sliding plate
  1. Block extension
  1. Fz load cell

Ensure that the quick-exchange plate is properly mounted on top of the load cell:


  1. Mount the fz load cell on the fast exchange plate and tighten the 4 captive screws.
    (4 x 10-32 x 1.250” long using 5/32 Allen wrench).
Incorrect
notion image
notion image
page icon
  • The fast exchange plate’s notch should be pointing on the opposite side of the front load cell as this notch will fit into the back of the sliding support.
  • The front of the load cell is the face showing the Rtec logo and the unit calibration sticker.
(Optional) With Extension blocks:

page icon
You can also use an extension block to reduce the distance between the load cell and the lower setup.
2" (left) and 4" extensions (right)
2" (left) and 4" extensions (right)
  1. Mount the block extension on the exchange plate with 4 4 x 10-32 x 1.250” long screws using 5/32 Allen wrench.
notion image
  1. Install the load cell mounted on the extension block with the 4 captives screws.
    (4 x 10-32 x 1.250” long using 5/32 Allen wrench).
page icon
  • The fast exchange plate’s notch should be pointing on the opposite side of the front load cell as this notch will fit into the back of the sliding support.
  • The component at the top of the picture is the fast exchange adapter.
  • The front of the load cell is the face showing the Rtec logo and the unit calibration sticker.
Incorrect
 
notion image
notion image
 

Install the Fz load Cell


  1. Lower the Z-Axis all the way down using the jogbox Z-axis control.
    1. notion image
  1. Slide the FZ-1D arm into the quick-exchange mount.
    1. notion image
  1. Secure the arm by locking it in place.
    1. notion image
⚠️
Always power off the instrument before connecting or installing any load cell
or accessory.

Mount the Fx-1D Arm


  1. Remove the right panel of the MFT to access to the fixation hole and sticker
    1. notion image
  1. Position yourself at the right frame of the MFT and place the back of the arm (the pivot base)against the frame, making sure the base of the arm is pressed against it.
    1. notion image
      page icon
      Refer to the alignment guide on the side of the instrument to determine
      the correct mounting holes.
      The level of the friction arm depends on the configuration.
      ex: For the block-on-ring configuration without heating chamber, use
      positions 5 and 7.
  1. Attach the friction arm to the instrument using the 1.125-inch screws and washers to secure the arm. (1/4-20 x 1.000” BM310340-09). Hand-tighten initially; fully tighten with the 3/16” Allen Key after final adjustments.
 

Mount the Spring Assembly


  1. Use a 5/64" Allen wrench to mount the springs to the front and back of the Fx-1D arm.
  1. Ensure proper tension and secure the spring assembly.
notion image

Attach the Load Cell Cables


  1. Connect the Sensor Cable
  1. Connect the Fx Arm Cable to the Fz Load Cell
  1. Raise the Fz-1D Load Cel
notion image
notion image
 

Pin/Ball holder preparation


The ball holder along with the provided collet can also accommodate circular pins.

notion image
  1. Loosen the nut to free the ball.
  1. Insert the adjusting pin into the holder, then the ball.
    Provided for standard test: Ball, .250" (1/4") (6.350mm) Dia
    E52100 100Cr6 grade 25 Alloy Steel.
  1. Hold the holder vertically, so the ball is resting on the pin.
    Using a 1/8" Allen key, fasten the screw inside the holder to slightly push the ball.
  1. Once the ball is retracted enough, fasten the nut to secure it.
 
notion image
ℹ️
For preliminary testing: The ball may be reused by rotating it to expose a unworn contact surface.
For final measurements: It is recommended to employ a new ball for each test to ensure accuracy and reproducibility.

Extension holder

ℹ️
  • Use the extension only in particular cases where the ball holder cannot reach the sample.
  • Increasing the ball holder length can negatively affect test results, especially in reciprocating tests. Whenever possible, use the load cell extension block instead.
 
 
notion image
(to reduce the distance towards the sample)

Universal Ball holder Overivew


notion image
 

1. Test Ball or Pin

Rtec balls catalog


  • E52100 Alloy Steel / HRC60
  • 304 SSt / HRC25
  • 440C SSt / HRC58
  • WC Tungsten Carbide / HRC75
  • SiN Silicon Nitride
  • Nonporous Alumina Ceramic balls
  • PTFE

Available Ball size :


  • 1.6mm
  • 3.9mm
  • 6.3mm
  • 9.5mm
  • 12.7mm
 

Upper Sample Holder for Chamber


1200° Chamber
Upper Sample Holder for  1200℃  Chamber
Part no.
Ball Holder 9.5 mm ( 3/8")
SPN03U008H
Ball and Pin Holder 6.35 mm  ( 1/4")
SPN03U008-1H
Ball Holder  3.175 mm ( 1/8")
SPN03U008-2H
Ball Holder 1.6 mm ( 1/16")
SPN03U008-3H
1000° Chamber
Upper Sample Holder for  1000℃  Chamber
Part no.
0.5 inch ball
SPN030060-55
0.375 inch ball
SPN030060-54
0.25 inch ball
SPN030060-53
3 mm ball
SPN030060-56
6mm diameter cylinder
SPN030041-462
6.3mm diameter cylinder
SPN13108
9.5mm diameter cylinder
SPN030041-463
12.7mm diameter cylinder
SPN030041-464
15mm diameter cylinder
SPN030041-465

2 . Nut

3. ER11 Collet

General metric range avalaible: from 1 mm to 7 mm (0.5 mm increments)
Each collet has a clamping range of 0.5 mm
ex: an ER11-3 mm collet can also clamp pins/balls with a 2.5-3.5 mm diameter.

4. Adjusting pin

This pin enables ball position adjustment within the collet.

5. Ball Holder

Holder Specification MSC 81197253
Collet Series
ER11
Shank Type
Straight
Through Coolant
No
Shank Diameter (Inch)
5/8
Minimum Collet Capacity (Decimal Inch)
0.0190
Maximum Collet Capacity (Decimal Inch)
0.2760
Overall Length (Inch)
3-1/2
Overall Length (Decimal Inch)
3.5
Actuator Type
Wrench
Shank Length (Decimal Inch)
3.0300
Collet Nut Diameter (Decimal Inch)
0.6200

6. Extension

ℹ️
For additional information or to place an order, please contact Rtec Support (contact information provided at the end of this manual).

Ball holder Spring Setup


Sleeve, insulator cap and the adaptor are placed on the top of the holder.

in order to be used with the suspensions.
notion image
notion image
notion image
For more information

A suspension is used to limit the vibration induced by the sample during testing. There are several variations of suspensions depending on the maximum load it can be effective on. .

It is recommended to select a suspension system with the closest higher load rating to the expected load.
For example, if you realize a test at 150N, you would need to use the 200N suspension. By doing so, you will mitigate the vibrations the most.
notion image
 

Block holder Spring Setup


Sleeve, insulator cap and the adaptor are placed on the top of the holder.

in order to be used with the suspensions.
  1. Slide in the block holder adapter sleeve.
  1. Add the first cap to the top of the ball holder.
  1. Place the spring onto the cap.
  1. Add the top cap on top of the spring.

notion image
notion image
 
notion image
 
page icon
The pictures below show the actual montage step directly on the arm.
Follow the next step to continue
notion image
notion image
notion image
 
 

Self-Adjusting Block holder preparation


notion image
ℹ️
The self-leveling block holder will ensure proper contact during the test.
  1. Firstly ,loosen the 2 tightening screws using /16” Allen key.
  1. Slide in the block sample into the block support
    1. ASTM Rtec Block Catalog

      HRC 58-62 Roughness 4-8 Uinch → D3704, G77, G176
      SPN13136-145
      HRC 27-33 Roughness 20-30 Uinch → D2714, D3704
      HRC 58-62 Roughness 20-30 Uinch D2509
      SPN13136-146
  1. Level the block sufficiently into the holder.
  1. Tighten the securing screws on each side.
 

Block sample Quotation


notion image

Rtec Test Block Size: 0.620 x 0.250 x 0.4

L x l x h in inches
Reference : MM000128-XX
notion image
Dimension in inches
Dimension in inches

Installing the montage into the arm


  1. Unscrew the thumb screw/knob present on the front of the arm
    You can now open the securing block and insert the holder.
    1. notion image
  1. Insert the holer onto the arm and align the slot on the sleeve with the alignment pin on the arm.
    1. notion image
      notion image
      page icon
      The flange of the insulator sleeve must be positioned towards the top of the block holder
      For the block holder: Make sure that the notch matches the extrusion of the block holder
  1. Slide the sleeve into position and loosely secure it.
    1. notion image
 

Level the arm


notion image
notion image
page icon
Use the built-in level on the 1D arm to ensure the arm is mounted horizontally.
 
  1. Manually press the arm so the ball holder contacts the sample, as the level must be evaluated when the pin/ball is in contact with the surface.
  1. Slightly loosen the tightening screw/knob.
  1. Adjust the arm position up or down until the level indicator shows proper alignment.
  1. Once the 1D arm and block holder aligned and level, tighten the sleeve
    securely.
    1. ⚠️
      The collets must be fully inserted into the arm
  1. The ball holder and arm can remain suspended
 

Confirm the assembly is secure and aligned


⚠️
Please verify this important aspect of the setup, as they can be easily forgotten or ignored, possibly affecting the quality of the testing and result.
notion image

Ensure that :


  • the lower module and the universal sample holder (rotary/reciprocating..) are secured, chamber cables are connected if used.
  • Fz and Fz cables are connected.
  • Ball or Block are tightened on the holder.
  • Arm is leveled and the collet fully inserted and aligned.
  • Adequate suspension is used.
⚠️

Important Note for a Chamber Setup

Please dont remove the lids (top cover of your chamber) at this point, until the homing have been done, to avoid any collision during the displacement.
 
 

Load Cell Verification and Calibration


Identify The Calibration Kit Components


notion image

1. Force gauge

(1N, 10 N, 100 N, 250 N range available)

2. Force gauge tip

3. Manual stage micrometer knob

4. A clamp for digital indicator

Digital indicator


notion image
It is possible to untighten the screw of the clamp to insert a displacement gauge in front of the force gauge.
The digital indicator needs to have a 3/8” mounting stem to be held by the clamp.
The digital indicator is required for the Z depth calibration of the indenter.

5. Calibration kit base plate

notion image
More information
The adaptor plate

It has the dimensions of the X, Y table round hole to place the sensor on an MFT-
5000 / MFT-2000 or SMT-5000. It has holes on one direction. These holes need to be in
the X direction. The sensor can be mounted in a different X position in some cases
where the central position cannot allow a proper calibration.
The Angle bracket

It has 4 screws on the bottom and 4 on the side to connect the calibration sensor to
the adaptor plate.
The calibration sensor

The calibration sensor is composed of a force gauge, a tip, a manual micrometer
knob, a clamp for a digital indicator and the positioning screws.
 
 
 
 
 
 
 
 
 
 

Starting with Fz measurement

Mounting the Kit for Fz measurement


  1. Install or ensure the kit sensor is correctly mounted onto the adaptor plate
    The Calibration kit fixed by 4 x screws in the middle of the adaptor plate
  1. Install the montage onto the motorized table, using x screws,
  1. Switch on the calibratred sensors ,the tester and the software.
  1. Keep suspensions and holders on the load cell.
  1. Do a coarse approach using the jogbox.
    Use XYZ axes control to align and approach the load cell tip to the force gauge tip (keep ~1mm spacing)
  1. Manually rotate the micrometer knob to bring the two tips into contact.
    Reset every force sensors, the load cell and the calibrated one.
    1. Biasing the MFT sensors

      Please refer to this animation as an example only.
      Please refer to this animation as an example only.
      On the right colum: CHANNEL DATA ,press the Red Bias Button next to each force/torque sensors.

      1. Bias the Fz sensor.
      1. Confirm the biasing operation. (Yes)
      1. Bias the Fx sensor.
      Other Sensors to bias when installed : Fx-piezo, Tz, TS, 6D
      page icon
      Manual stage micrometer head has a maximum load limit of 100N. To measure higher load, refer to
      the last page of this manual.
  1. Keep rotating until the target calibration force value is reached.
 

In case of Inacurate Sensor Value → 2 Points Calibration


 
  1. Go to Configuration.
  1. Press CONFIG next to the sensors to calibrate
  1. Press CALIBRATE.
  1. Press NO LOAD after ensuring that no force are applied on the MFT sensor.
  1. Put a calibrated weight or, following the calibration calibration, apply the force in contact with the calibrated sensor.
  1. Enter the weight mass, or the load measured in Newton (Kg not recommended for now) into the Step 2.
  1. Press LOAD APPLIED
⚠️ The new offset may not be to far from the previous uncalibrated offset, otherwise you may have selected a incorrent range, or entered an incorrect calibrating point.
  1. Addtionaly, you can verify on higher load the accuracy of the new unit range now defined.
 

Fx measurement

  1. Firstly, move the calibrated kit to either the left or right position on the adapter plate, depending on your orientation
  1. Then, you must the kit adapter to plate from the black upright panel
    1. notion image
  1. a
  1. a
  1. a
  1. a

In case of Inacurate Sensor Value → 2 Points Calibration


 
  1. Go to Configuration.
  1. Press CONFIG next to the sensors to calibrate
  1. Press CALIBRATE.
  1. Press NO LOAD after ensuring that no force are applied on the MFT sensor.
  1. Put a calibrated weight or, following the calibration calibration, apply the force in contact with the calibrated sensor.
  1. Enter the weight mass, or the load measured in Newton (Kg not recommended for now) into the Step 2.
  1. Press LOAD APPLIED
⚠️ The new offset may not be to far from the previous uncalibrated offset, otherwise you may have selected a incorrent range, or entered an incorrect calibrating point.
  1. Addtionaly, you can verify on higher load the accuracy of the new unit range now defined.
 
 
 
 
 
 
 
 
 
 
 
 

Contact & Support


For technical support or further assistance, please contact:
Rtec-Instruments Support
support@rtec-instruments.com
+1 (408) 708-9226

Manual Versions


Manual Version
Date
Update Description
Initial Manual Version